首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166525篇
  免费   14665篇
  国内免费   7908篇
工业技术   189098篇
  2024年   300篇
  2023年   2482篇
  2022年   3989篇
  2021年   6267篇
  2020年   4881篇
  2019年   3966篇
  2018年   4672篇
  2017年   5227篇
  2016年   4658篇
  2015年   6526篇
  2014年   8248篇
  2013年   10167篇
  2012年   11245篇
  2011年   12309篇
  2010年   10852篇
  2009年   10416篇
  2008年   10597篇
  2007年   10004篇
  2006年   9695篇
  2005年   8308篇
  2004年   5711篇
  2003年   4620篇
  2002年   4127篇
  2001年   3826篇
  2000年   3725篇
  1999年   3956篇
  1998年   3231篇
  1997年   2789篇
  1996年   2479篇
  1995年   2133篇
  1994年   1697篇
  1993年   1321篇
  1992年   1048篇
  1991年   782篇
  1990年   630篇
  1989年   516篇
  1988年   405篇
  1987年   302篇
  1986年   204篇
  1985年   173篇
  1984年   95篇
  1983年   79篇
  1982年   90篇
  1981年   63篇
  1980年   60篇
  1979年   42篇
  1978年   24篇
  1977年   26篇
  1976年   40篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Anticounterfeiting materials are used to distinguish real banknotes, products, and documents from counterfeits, fakes, or unauthorized replicas. However, conventional anticounterfeiting materials generally exhibit a single anticounterfeiting function, resulting in a low level of security. Herein, a novel anticounterfeiting nanocomposite is demonstrated with numerous prominent security features. The nanocomposite is fabricated by doping upconverting nanoparticles (UCNPs) in a photoresponsive azobenzene-containing polymer (azopolymer). Because of the cistrans photoisomerization of the azopolymer, the nanocomposite exhibits photoinduced reversible color changes suitable for anticounterfeiting applications. Additionally, the hard nanocomposite can be converted to a rubber-like soft solid by light irradiation. Imprinted microstructures are fabricated on the photosoftened nanocomposite, which result in photonic colors. Moreover, polarization-dependent structures are fabricated on the nanocomposite via photoinduced orientation for encryption. Importantly, UCNPs in the nanocomposite emit visible light upon excitation by near-infrared light, enabling the observation of various anticounterfeiting structures with high contrast. An advantage of the anticounterfeiting nanocomposite is that the security features can be observed by the naked eye for quick discrimination and can be analyzed using laboratory equipment for higher accuracy. The anticounterfeiting nanocomposite is easily processed on paper, glass, and plastic, which demonstrates its potential anticounterfeiting functions for banknotes, wines, and medicines.  相似文献   
92.
In this work, gallium doped copper sulfide (Ga-doped CuS) nanocrystals were prepared using a solvothermal method. The effects of Ga doping on the crystal structures, chemical composition, morphology, optical properties and thermal performance of copper sulfide (CuS) were investigated. The Ga-doped CuS nanocrystals had a hexagonal structure comparable to that of pure CuS. The Cu+/Cu2+ ratio first decreased and then increased with increasing Ga3+ doping. Both CuS and Ga-doped CuS exhibited nanoplate and nanorod morphologies. The visible transmittance of the Ga-doped CuS films was in the range of 61–77.1%. Importantly, the near-infrared (NIR) shielding performance of the films can be tuned by adjusting the concentration of the Ga dopant. The NIR shielding value of the optimal Ga-doped CuS film was 72.4%, which was approximately 1.5 times as high as that of the pure CuS film. This can be ascribed to the enhanced plasmonic NIR absorption that resulted from an increase in the hole concentration after doping with Ga3+ ions. In the thermal performance test, the Ga-doped CuS film lowered the interior temperature of the heat box by 9.1 °C. Therefore, the integration of good visible transmittance and high NIR shielding performance make the Ga-doped CuS nanocrystals a promising candidate for energy-efficient window coatings.  相似文献   
93.
Synthetic active matters are perfect model systems for non-equilibrium thermodynamics and of great potential for novel biomedical and environmental applications. However, most applications are limited by the complicated and low-yield preparation, while a scalable synthesis for highly functional microswimmers is highly desired. In this paper, an all-solution synthesis method is developed where the gold-loaded titania-silica nanotree can be produced as a multi-functional self-propulsion microswimmer. By applying light, heat, and electric field, the Janus nanotree demonstrated multi-mode self-propulsion, including photochemical self-electrophoresis by UV and visible light radiation, thermophoresis by near-infrared light radiation, and induced-charge electrophoresis under AC electric field. Due to the scalable synthesis, the Janus nanotree is further demonstrated as a high-efficiency, low-cost, active adsorbent for water decontamination, where the toxic mercury ions can be reclaimed with enhanced efficiency.  相似文献   
94.
A submerged macrophyte sediment microbial fuel cell (SP-SMFC) was constructed in this study. Ceratophyllum demersum L., Vallisneria natans, Hydrilla verticillate were chosen as the submerged plants to form cer-SMFC, val-SMFC, hyd-SMFC systems. Plant groups showed the advantage of bioelectricity generation and pollutants removal compared with the unplanted system. The cer-SMFC group stood out with the maximum power density as 24.56 mW m?2 and the average pollutants removal in overlying water (COD: 81.16%, TN: 65.27%, TP: 79.10%) and in sediments (TN: 26.40%, TP: 21.79%). The determination of root exudates and radial oxygen loss (ROL) demonstrated that C. demersum L. was superior to other studied submerged macrophytes. More root exudates may contribute to an increase in available substrates for electrochemically active bacteria and other microorganisms. Higher enzyme activities were obtained in three SP-SMFCs (especially in cer-SMFC). ATPase and APA activities in cer-SMFC group were increased by over 40% compared with the control. The results indicated that the presence of plants enhanced the microorganism activities, thereby improving bioelectricity generation and pollutants removal. This study will facilitate the application of SP-SMFC technology as an alternative for in situ remediation of polluted sediments.  相似文献   
95.
High quality zirconia whiskers have been successfully prepared by molten salt method, using zirconium oxychloride (ZrOCl2·8H2O) and sodium phosphate tribasic dodecahydrate (Na3PO4·12H2O) as precursor and molten salt, respectively. The effects of types of molten salt and heat treatment temperature on the formation of zirconia whiskers were characterized by XRD, Raman, DTA-TG, FE-SEM, TEM, SAED and HR-TEM. When Na3PO4·12H2O is utilized as molten salt and the heat treatment temperature is 900?°C, the as-prepared zirconia whiskers with length ranging from 4?µm to 8?µm show an average aspect ratio of 25. The obtained ZrO2 whiskers with monoclinic structure are elongated along [010] direction and exhibit a smooth surface with no distinct defects. The XRD and Raman results reveal that the phase transformation from tetragonal zirconia to monoclinic zirconia occurs with the increased crystal size and the water quenching treatment can significantly reduce the content of sodium zirconium phosphate [Na9–4×Zrx(PO4)3] in the final product. The growth mechanism of zirconia whiskers is supposed to be a dissolution-precipitation process. Since the sodium zirconium phosphate [Na9–4×Zrx(PO4)3] effectively promotes the dissolution of zirconia in liquid molten salt, zirconia can grow into zirconia whiskers according to its anisotropy.  相似文献   
96.
Flammable, explosive and toxic gases, such as hydrogen, hydrogen sulfide and volatile organic compounds vapor, are major threats to the ecological environment safety and human health. Among the available technologies, gas sensing is a vital component, and has been widely studied in literature for early detection and warning. As a metal oxide semiconductor, zinc ferrite (ZnFe2O4) represents a kind of promising gas sensing material with a spinel structure, which also shows a fine gas sensing performance to reducing gases. Due to its great potentials and widespread applications, this article is intended to provide a review on the latest development in zinc ferrite based gas sensors. We first discuss the general gas sensing mechanism of ZnFe2O4 sensor. This is followed by a review of the recent progress about zinc ferrite based gas sensors from several aspects: different micro-morphology, element doping and heterostructure materials. In the end, we propose that combining ZnFe2O4 which provides unique microstructure (such as the multi-layer porous shells hollow structure), with the semiconductors such as graphene, which provide excellent physical properties. It is expected that the mentioned composites contribute to improving selectivity, long-term stability, and other sensing performance of sensors at room or low temperature.  相似文献   
97.
To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the past three decades.In SMRM,equivalent continuum models of stressestrain relationship,strength and failure probability for jointed rock masses were established,which were based on the geometric probability models characterising the rock mass structure.This follows the statistical physics,the continuum mechanics,the fracture mechanics and the weakest link hypothesis.A general constitutive model and complete stressestrain models under compressive and shear conditions were also developed as the derivatives of the SMRM theory.An SMRM calculation system was then developed to provide fast and precise solutions for parameter estimations of rock masses,such as full-direction rock quality designation(RQD),elastic modulus,Coulomb compressive strength,rock mass quality rating,and Poisson’s ratio and shear strength.The constitutive equations involved in SMRM were integrated into a FLAC3D based numerical module to apply for engineering rock masses.It is also capable of analysing the complete deformation of rock masses and active reinforcement of engineering rock masses.Examples of engineering applications of SMRM were presented,including a rock mass at QBT hydropower station in northwestern China,a dam slope of Zongo II hydropower station in D.R.Congo,an open-pit mine in Dexing,China,an underground powerhouse of Jinping I hydropower station in southwestern China,and a typical circular tunnel in Lanzhou-Chongqing railway,China.These applications verified the reliability of the SMRM and demonstrated its applicability to broad engineering issues associated with jointed rock masses.  相似文献   
98.
The electrochemical water splitting to produce H2 in high efficiency with earth-abundant-metal catalysts remains a challenge. Here, we describe a simple “cyclic voltammetry + ageing” protocol at room temperature to activate Ni electrode (AC-Ni/NF) for hydrogen evolution reaction (HER), by which Ni/Ni(OH)2 heterostructure is formed at the surface. In situ Raman spectroscopy reveals the gradual growth of Ni/Ni(OH)2 heterostructure during the first 30 min of the aging treatment and combined with polarization measurements, it suggests a positive relation between the Ni/Ni(OH)2 amount and HER performance of the electrode. The obtained AC-Ni/NF catalyst, with plentiful Ni–Ni(OH)2 interfaces, exhibits remarkable performance towards HER, with the low overpotential of only 30 mV at a H2-evolving current density of 10 mA/cm2 and 153 mV at 100 mA/cm2, as well as a small Tafel slope of 46.8 mV/dec in 1 M KOH electrolyte at ambient temperature. The excellent HER performance of the AC-Ni/NF could be maintained for at least 24 h without obvious decay. Ex situ experiments and in situ electrochemical-Raman spectroscopy along with density functional theory (DFT) calculations reveal that Ni/Ni(OH)2 heterostructure, although partially reduced, can still persist during HER catalysis and it is the Ni–Ni(OH)2 interface reducing the energy barrier of H1 adsorption thus promoting the HER performance.  相似文献   
99.
One-dimensional porous carbons bearing high surface areas and sufficient heteroatom doped functional-ities are essential for advanced electrochemical energy storage devices, especially for developing free-standing film electrodes. Here we develop a porous, nitrogen-enriched, freestanding hollow carbon nanofiber (PN-FHCF) electrode material via filtration of polypyrrole (PPy) hollow nanofibers formed by in situ self-degraded template-assisted strategy, followed by NH3-assisted carbonization. The PN-FHCF retains the freestanding film morphology that is composed of three-dimensional networks from the entanglement of 1D nanofiber and delivers 3.7-fold increase in specific surface area (592 m2·g-1) com-pared to the carbon without NH3 treatment (FHCF). In spite of the enhanced specific surface area, PN-FHCF still exhibits comparable high content of surface N functionalities (8.8%, atom fraction) to FHCF. Such developed hierarchical porous structure without sacrificing N doping functionalities together enables the achievement of high capacity, high-rate property and good cycling stability when applied as self-supporting anode in lithium-ion batteries, superior to those of FHCF without NH3 treatment.  相似文献   
100.
The photoluminescence, dielectric relaxation, ferroelectric hysteresis, and field-induced strain properties of Pr3+-doped 0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PIN-PMN-PT:Pr3+) multifunctional ceramics have been investigated. It was found that Pr3+ doping enhanced the dielectric diffuseness and relaxation behavior of PIN-PMN-PT ceramics. Slim P-E loops and S-E curves appear in PIN-PMN-PT:Pr3+ ceramics when the Pr3+ doping concentration reaches 1.4 mol%. Local domain configurations associated with phase transitions were investigated by piezoresponse force microscopy (PFM). Large electrostrictive coefficient Q33 (?0.03 m4/C2) and high energy-storage efficiency η (92%) were obtained in 2 mol% Pr3+-doped PIN-PMN-PT ceramic in the ergodic relaxor (ER) phase at room temperature. The giant electrostrictive effect and excellent energy-storage performance are related to the field-induced dynamic behavior of polar nanoregions (PNRs). The results show that the PIN-PMN-PT:Pr3+ system is an excellent multifunctional material for making electromechanical and energy storage devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号